Escherichia coli RNA and DNA polymerase bypass of dihydrouracil: mutagenic potential via transcription and replication.

نویسندگان

  • J Liu
  • P W Doetsch
چکیده

Dihydrouracil (DHU) is a DNA base damage product produced in significant amounts by ionizing radiation damage to cytosine under anoxic conditions. DHU represents a model for pyrimidine base damage (ring saturation products) of the type recognized and repaired by Escherichia coli endonuclease III and its homologs in other species. We have built this lesion into synthetic oligonucleotides, with DHU placed at a single location downstream from an E.coli RNA polymerase promoter. This construct was used to determine the effect of DHU when encountered on a DNA template strand by either E.coli RNA or DNA polymerase (Klenow fragment). Single round transcription experiments or primer extension-type replication experiments were conducted in order to make a direct comparison between RNA and DNA polymerases with DHU placed within the same sequence context. Both DNA and RNA polymerase efficiently bypass DHU and insert adenine opposite this lesion. These results suggest that DHU is mutagenic with respect to both replication and transcription and have implications for DNA repair as well the routes leading to generation of mutant proteins in dividing and non-dividing cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of abasic sites and DNA single-strand breaks on prokaryotic RNA polymerases.

Abasic sites are thought to be the most frequently occurring cellular DNA damage and are generated spontaneously or as the result of chemical or radiation damage to DNA. In contrast to the wealth of information that exists on the effects of abasic sites on DNA polymerases, very little is known about how these lesions interact with RNA polymerases. An in vitro transcription system was used to de...

متن کامل

HU protein of Escherichia coli has a role in the repair of closely opposed lesions in DNA.

Closely opposed lesions form a unique class of DNA damage that is generated by ionizing radiation. Improper repair of closely opposed lesions could lead to the formation of double strand breaks that can result in increased lethality and mutagenesis. In vitro processing of closely opposed lesions was studied using double-stranded DNA containing a nick in close proximity opposite to a dihydrourac...

متن کامل

Replication of UV-irradiated single-stranded DNA by DNA polymerase III holoenzyme of Escherichia coli: evidence for bypass of pyrimidine photodimers.

Replication of UV-irradiated circular single-stranded phage M13 DNA by Escherichia coli RNA polymerase (EC 2.7.7.6) and DNA polymerase III holoenzyme (EC 2.7.7.7) in the presence of single-stranded DNA binding protein yielded full-length as well as partially replicated products. A similar result was obtained with phage G4 DNA primed with E. coli DNA primase, and phage phi X174 DNA primed with a...

متن کامل

Abasic sites and strand breaks in DNA cause transcriptional mutagenesis in Escherichia coli.

DNA damage occurs continuously, and faithful replication and transcription are essential for maintaining cell viability. Cells in nature are not dividing and replicating DNA often; therefore it is important to consider the outcome of RNA polymerase (RNAP) encounters with DNA damage. Base damage in the DNA can affect transcriptional fidelity, leading to production of mutant mRNA and protein in a...

متن کامل

Antibacterial Activity of the Peptide Microcin J25 Produced by Escherichia coli

Background and objectives: Bacteriocins are generally active antimicrobial peptides effective against bacteria closely related to the producer. Escherichia coli produce two bacteriocins: colicins and microcins. Microcin J25 (Mcc J25) is an antibacterial peptide that inhibits bacterial transcription by disrupting the nucleotide-uptake channel of bacterial RNA polymerase. The objective of this st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 26 7  شماره 

صفحات  -

تاریخ انتشار 1998